Los cimientos de las construcciones tensadas

Una aproximación práctica

Ramon Sastre
Marzo 2006
Índice de contenidos

1. Los cimientos de las construcciones tensadas... 3
 1.1 Introdución.. 3
 1.2 Tipología de los cimientos.. 4
2. Fuerza vertical de extracción... 14
 2.1 Introducción.. 14
 2.2 Peso propio.. 14
 2.3 Rozamiento.. 15
 2.4 Pavimento.. 15
 2.5 Resistencia total.. 16
 2.6 Coeficiente de seguridad... 16
 2.7 Diseño constructivo... 17
 2.8 Ejemplos.. 17
3. Fuerza inclinada de extracción... 20
 3.1 Introducción.. 20
 3.2 Resistencia lateral del terreno... 20
 3.3 Rozamiento.. 21
 3.4 Pavimento.. 22
 3.5 Resistencia total.. 22
 3.6 Coeficiente de seguridad... 23
 3.7 Giro del cimiento... 23
 3.8 Ejemplos.. 23
4. Fuerza vertical de compresión.. 29
 4.1 Introducción.. 29
 Consideraciones particulares ... 29
 4.3 Diseño constructivo... 31
 4.4 Ejemplos.. 31
5. Fuerza inclinada de compresión... 32
 5.1 Introducción.. 32
 5.2 La componente horizontal... 32
 5.3 Giro de la zapata... 33
 5.4 Ejemplos.. 34
6. Elemento encastado a la cimentación.. 36
 6.1 Introducción.. 36
 6.2 Las fuerzas... 36
 6.3 El momento... 37
 6.4 Ejemplos.. 38
1. Los cimientos de las construcciones tensadas

1.1 Introducción

Los cimientos de las construcciones tradicionales (estructuras de piedra, ladrillo, madera, acero, etc.) son muy diversos. En función del tipo de terreno, de su estratificación, del tipo de estructura (porticada, continua, ...) y del tipo y magnitud de las cargas, se genera una tipología de cimientos muy diversa: zapatas aisladas, continuas, excéntricas, vigas y losas de cimentación, pilotes, etc.

Sin embargo, a pesar de esta diversidad, suele encontrarse un factor común. La acción predominante sobre el cimiento es la compresión. Una fuerza que empuja el cimiento hacia abajo y que ha de ser contrarrestada por la resistencia del terreno que se encuentra debajo el cimiento (o al lado, por rozamiento, en algunos tipos, como es el caso de ciertos pilotes).

Es cierto que también encontramos otros casos con otros tipos de acciones, sobre todo en estructuras con pilares empotrados en el cimiento (por lo menos ésta es la forma habitual de calcular las estructuras). Esos pilares presentan en su base un esfuerzo cortante y un momento flector que también hace falta equilibrar. El cortante no acostumbra a ser demasiado importante, y por lo tanto, la mayoría de veces se soluciona el problema con la resistencia a tracción o compresión que ofrecen las riostras horizontales que se disponen entre las diferentes zapatas.

En cuanto al momento, puede resultar importante en los pilares extremos de los pórticos y sobre todo en las zapatas excéntricas (por ejemplo, en las paredes de medianera). En estos casos las soluciones son variadas, pero muchas veces recurren al uso de vigas centradoras entre la zapata afectada y otra de interior, a la cual se conecta.

Incluso así, en todos los casos, la fuerza vertical de compresión es la más importante y la que caracteriza el tipo de cimiento a utilizar.

En las construcciones tensadas también encontramos cimientos iguales a los que acabamos de comentar, por ejemplo, en los mástiles verticales centrales de una cubierta en forma de conoide, pero éstos son los casos menos frecuentes.
1.2 Tipología de los cimientos

En general, los cimientos típicos de las construcciones tensadas se pueden clasificar, según la acción a la cual están sometidos, en alguno de estos tipos:

1. Fuerza de tracción vertical (cable vertical)
2. Fuerza de tracción inclinada (cualquier cable o viento que se fija al suelo)
3. Fuerza de compresión inclinada (mástiles inclinados, base de un arco, etc.)
4. Fuerza de compresión vertical (mástil vertical)
5. Momento, con fuerzas verticales y horizontales de menor importancia, sobre todo la vertical (pies derechos que soportan una membrana, sin ayuda de vientos)

Como vemos, solo el tipo 4 corresponde al que hemos llamado cimiento tradicional. El tipo 3 podría considerarse tradicional si la componente horizontal fuera muy pequeña y si hubiera la posibilidad de establecer un emparrillado de riestras entre los distintos cimientos. En los otros casos ya veremos que el diseño del cimiento es bastante diferente.

1.3 Recursos para el equilibrio

A fin de contrarrestar las acciones producidas por los elementos estructurales propios de las construcciones tensadas, los cimientos utilizan una serie de recursos que, si bien son los mismos que podrían ser utilizados en cualquier tipo de cimiento, son más habituales en esta tipología.

Así pues, podremos considerar los recursos siguientes:

- La resistencia a compresión del terreno, en el fondo del cimiento.
- La resistencia a compresión del terreno, en los laterales del cimiento.
- El rozamiento entre las paredes y el suelo del cimiento con el terreno.
- El peso propio del cimiento y de todos los otros materiales o elementos constructivos situados encima del cimiento: suelo, soleras, losas, pavimentos, ...
- La resistencia propia de una posible losa de hormigón armado, continua, por encima del cimiento.
1.4 La resistencia a compresión vertical del terreno

La fuerza vertical de compresión se suele equilibrar exclusivamente con la reacción del terreno en la base del cimiento. Se procura que la fuerza repartida sobre la superficie del cimiento no supere un valor σ_t que llamaremos presión admisible del terreno

$$F_v / A \leq \sigma_t$$

Este valor σ_t nos viene determinado por los datos obtenidos en el estudio geotécnico del terreno y, evidentemente, se obtiene utilizando los valores característicos del suelo: densidad, ángulo de rozamiento interno y cohesión. Con estos datos y en función de las dimensiones del cimiento se puede calcular cual será la presión admisible del terreno.

Muchas veces, en este valor, ya se incluye el coeficiente de seguridad, de forma que el dimensionado del cimiento sea inmediato.

Así, si hemos de cimentar un pilar vertical que soporta una carga de compresión de 50 t, en un terreno que tiene una presión admisible de 1,5 kp/cm² = 15 t/m², necesitaremos una zapata con una superficie de 50 / 15 = 3,33 m² que corresponde, aproximadamente, a una zapata cuadrada de 1,85 o 1,9 m de lado. El canto de la zapata depende de otros factores (si la zapata ha de ser rígida o flexible), pero en este momento esto no es relevante.

1.5 La resistencia a compresión horizontal del terreno

En los cimientos de las construcciones tensadas frecuentemente aparecen fuerzas horizontales que hace falta contrarrestar. Entendiendo que muchas veces sólo el terreno ofrece resistencia a estas acciones, hace falta determinar cual es la resistencia horizontal de este terreno.

No se trata de la presión admisible del terreno, como en el caso anterior. En este caso la resistencia del terreno viene dada por la capacidad de la masa del terreno que envuelve el cimiento de oponerse a un desplazamiento horizontal.

Para determinar el valor de esta capacidad tendremos que recorrer a los conocimientos generales de Mecánica del Suelo. Sabemos que los terrenos son materiales granulares y, tal como sucede con los líquidos, provocan en su interior una presión lateral que es función del peso que soportan. Por lo tanto, cuanto más denso es un suelo, más grande es la presión lateral que provoca.
Si excavamos un terreno y lo llenamos con un cimiento (normalmente de hormigón), este cimiento se encuentra sometido a una presión lateral, por todas sus caras, producida por el suelo que lo rodea. Esta presión varía con la profundidad, ya que cuanto más abajo, más peso de tierra hay por encima, por lo tanto, más grande es la presión del terreno.

Esta presión sobre la cara lateral del cimiento genera una fuerza que se llama empuje en reposo E_0. No se debe confundir con el empuje activo E_a, el cual se utiliza habitualmente en el cálculo de muros de contención, ya que este empuje activo es el que se genera en el momento preciso en que el muro se empieza a desplazar en el mismo sentido del empuje. En el caso de un cimiento no hay ningún desplazamiento y por lo tanto no tiene ningún sentido hablar de empuje activo.

De acuerdo con la teoría de la Mecánica del Suelo, el empuje en reposo se desarrolla como una fuerza repartida linealmente, en forma triangular, con el valor cero en la cota superior del terreno y con valor e_0 a una cota h, siendo γ la densidad del suelo.

$$e_0 = \gamma \cdot h \cdot K_0$$

De esta manera la resultante del empuje en reposo, situada a una distancia $2h/3$ de la superficie del suelo, vale

$$E_0 = \frac{1}{2} \cdot K_0 \cdot \gamma \cdot h^2$$

donde K_0 es un valor que depende directamente del ángulo de rozamiento interno del suelo ϕ. En general se suele aceptar el valor siguiente

$$K_0 = 1 - \sin (\phi)$$

con variantes próximas ($K_0 = 0,95 - \sin(\phi)$). Este valor se ve afectado también por el grado de compactación del terreno.

$$K_0 = 1 - \sin (\phi) \cdot \sqrt{R_{oc}}$$

siendo R_{oc} la razón de sobreconsolidación del terreno (Código Técnico-2006: Cociente entre la presión efectiva de sobreconsolidación y la presión efectiva actual)

Podemos tomar como valores habituales los siguientes1:

- arenas blandas $K_0 = 0,50$ a $0,65$
- arenas densas $K_0 = 0,35$ a $0,45$
- arcillas $K_0 = 0,70$ a $0,75$
- arenas compactadas $K_0 = 1,00$ a $2,00$
- arcillas compactadas $K_0 = 0,80$ a $1,50$

1 El terreno, Matilde González Caballero, Edicions UPC, 2001
Los cimientos de las construcciones tensadas. Ramon Sastre, 2006

Es evidente que estos valores son muy variables, por lo tanto de su exactitud dependerá el resultado de obtengamos en nuestro cálculo. No tiene ningún sentido afinar con formulas muy complejas, si no conocemos el valor de K_0 con un grado de precisión elevado.

Entendiendo que esta presión es provocada por el terreno sin necesidad de movilizar ningún desplazamiento, se puede contar con ella de forma segura. No sucede lo mismo con el empuje pasivo E_p o resistencia pasiva del terreno. La resistencia pasiva del terreno es la fuerza que hace falta hacer para movilizar o desplazar un terreno (el que envuelve el cimiento) en la dirección del propio empuje. En este caso, la fuerza es muy superior a la resistencia en reposo ($empuje en reposo$) que hemos comentado anteriormente.

No obstante, no debemos confiar con esta resistencia para equilibrar fuerzas horizontales exteriores importantes ya que haría falta permitir un desplazamiento del terreno que no es menospreciable y que, normalmente, no es aceptable para las construcciones normales, ni tampoco para las construcciones tensadas, aunque no sean tan graves los problemas que se generarían.

En la figura (Figura 6.5 del Código Técnico) se recoge un esquema de relación entre los empujes del terreno y los movimientos necesarios para su desarrollo. Es importante resaltar la magnitud de estos movimientos necesarios para que se desarrolle totalmente el empuje pasivo.

Ahora bien, no parece una idea descabellada utilizar este empuje pasivo como recurso resistente para el cumplimiento del factor de seguridad. Si el empuje en reposo es igual a la fuerza horizontal aplicada, un factor de seguridad $f_s = 1,5$ significa que la resistencia pasiva debería de ser igual a 1,5 veces el $empuje en reposo$, lo cual se produce prácticamente en todos los terrenos. Además, para movilizar este valor de resistencia igual a 1,5 veces el empuje en reposo, el desplazamiento que se produce es muy pequeño (del orden de pocos milímetros) y por lo tanto asumible para la mayoría de construcciones tensadas.
1.6 El rozamiento entre el cimiento y el terreno

Cuando dos superficies (en el caso presente el cimiento y el terreno) están en contacto y existe una fuerza perpendicular (normal) al plano de contacto, se genera una fuerza de rozamiento que intenta impedir el desplazamiento de una superficie respecto de la otra.

El valor de la resistencia de rozamiento R_f es igual a la fuerza normal F_N por el coeficiente de rozamiento c_f

$$R_f = F_N \cdot c_f$$

En el caso que nos ocupa, el coeficiente de rozamiento entre el terreno y el cimiento no puede ser superior al coeficiente de rozamiento interno del terreno, el valor del cual es la tangente del ángulo de rozamiento interno del terreno, valor que, como ya se ha visto, es imprescindible conocer para evaluar el empuje en reposo del terreno.

$$c_f \leq \tan(\phi)$$

Es una práctica habitual utilizar un valor de $c_f = 2/3 \cdot \tan(\phi)$ aún que hay casos donde este valor no es aconsejable, tal y como se verá más adelante.

La resistencia de rozamiento entre el terreno y el cimiento se produce en dos situaciones diferentes, con consideraciones también diferentes:

1. Rozamiento en la base del cimiento.

Si en la base del cimiento existe una carga de compresión, se producirá una resistencia de rozamiento al desplazamiento lateral del cimiento. Para que esto suceda hace falta que:

$$Q_T = Q_V + P_F + P_P > 0$$

donde

- Q_V: Carga vertical aplicada sobre el cimiento
- P_F: Peso propio del cimiento
- P_P: Peso propio de los elementos constructivos situados por encima del cimiento: pavimento, solera, losa de hormigón, etc.

$$Q_T = -Q_V + P_F + P_P >\approx 0$$

Cuando la carga vertical es positiva (compresión) el total será siempre positivo y por lo tanto siempre existirá una resistencia de rozamiento horizontal. Ahora bien, cuando la carga vertical es negativa (tracción) el total también tendrá que ser positivo, ya que si no fuera así el cimiento se movería hacia arriba, pero el valor total será más pequeño, acercándose, a veces a un valor parecido a cero.
Los cimientos de las construcciones tensadas. Ramon Sastre, 2006

El coeficiente de rozamiento c_f entre el cimiento y el terreno inferior podría verse afectado por la humedad. Esta es la razón por la cual los cimientos suelen tener una profundidad mínima (generalmente ≥ 80 cm), a fin de que la lluvia o el agua superficial (riego, vertidos, ...) no afecte terreno bajo la zapata. No solo por razones de rozamiento sino porque también afectaría a la capacidad portante (presión admisible) del propio terreno. Si aun así se prevé que el terreno bajo la zapata pueda estar húmedo (por ejemplo, por agua freática) el coeficiente c_f puede llegar a valer cero.

Contrariamente, en la mayoría de los casos, el hormigón y el suelo inferior forman una interfase perfectamente adaptada (vertido del hormigón) de tal manera que el coeficiente de rozamiento puede llegar a su valor máximo $c_f = \tan(\phi)$.

Resumiendo, el valor del rozamiento horizontal de la base del cimiento es:

$$F_h = c_f \cdot Q_T$$

2. Rozamiento en las caras laterales de los cimientos.

Las caras laterales de un cimiento están sometidas al empuje en reposo del terreno. Este valor, tal como se ha comentado anteriormente, es:

$$E_{0T} = a \cdot \frac{1}{2} \cdot K_0 \cdot \gamma \cdot h^2$$

donde a es el ancho de la cara en cuestión del cimiento y h su altura. En este caso, también, hay varias razones para las cuales este valor puede ser cero.

- El plano vertical entre terreno y el cimiento está húmedo: por agua de la lluvia que se ha filtrado, por agua freática, por riego o vertidos, etc.
- El contacto entre terreno y cimiento no existe porque el terreno se ha separado del cimiento:
 - debido a la cohesión o a la retracción del terreno (arcillas expansivas, por ejemplo).
 - debido a la retracción excesiva del hormigón del cimiento.
 - debido al movimiento, aunque mínimo, del cimiento a causa de la fuerza horizontal aplicada (este caso solo afecta a la cara posterior de la zapata en el sentido del movimiento).
- En el caso de cimientos prefabricados, con caras muy lisas.

En todos estos casos, si no se puede precisar el grado de contacto y rozamiento entre hormigón y terreno, es mejor prescindir de este recurso de equilibrio, a fin de quedarse por el lado de la seguridad.

Una característica de este tipo de rozamiento lateral es que puede tener dos direcciones:

- Vertical: En las cuatro caras de la zapata. Se trata de evitar un movimiento vertical as-
cendente. Se tiene en cuenta como recurso de equilibrio ante acciones verticales de tracción. No se considera, como factor a tener en cuenta, en un movimiento vertical descendiente, ya que el terreno inferior de debajo de la zapata evita siempre este movimiento.

- Horizontal: afecta a las dos caras laterales del cimiento (asumiendo un cimiento de planta rectangular). Se tiene en cuenta como recurso de equilibrio ante acciones horizontales.

Resumiendo, si suponemos un cimiento prismático de dimensiones \((a \times b) \times h\) el valor del rozamiento total horizontal a las caras laterales del cimiento, según la dirección paralela a la cara \(a\) o a la cara \(b\) será:

\[
F_{ha} = c_f \cdot a \cdot K_0 \cdot \gamma \cdot h^2
\]
\[
F_{hb} = c_f \cdot b \cdot K_0 \cdot \gamma \cdot h^2
\]

Si se trata de considerar el rozamiento total vertical, el valor máximo es

\[
F_v = c_f \cdot (a+b) \cdot K_0 \cdot \gamma \cdot h^2
\]

No obstante ya se ha comentado que hace falta contemplar el caso donde, debido a un movimiento horizontal, haya una cara que no ofrezca rozamiento de ningún tipo.

1.7 El peso propio

Se trata del recurso de equilibrio más fiable. El peso del cimiento es un valor que no cambia y que siempre está presente. El peso de los elementos constructivos situado por encima del cimiento también pueden ser valores fiables (soleras, pavimentos, losas de hormigón, etc.), si bien en algunos casos haría falta contemplar la posibilidad que fuesen alterados o retirados, al cabo de un cierto tiempo, por razones de uso.

La mayoría de cimientos se hacen con hormigón armado. Según la calidad del hormigón y la calidad de la armadura, la densidad relativa del cimiento oscila entre valores de 2,2 a 2,5. Lo mismo podemos decir de la posible losa de hormigón u hormigón armado que pueda haber por encima del cimiento. En cuanto a las soleras de grava o al pavimento, los valores de la densidad son más variables, pero siempre con valores entre 1,5 y 2.

Teniendo en cuenta la fiabilidad de este recurso de equilibrio, es aconsejable en algunos casos (por ejemplo, fuerzas de extracción) confiar solamente en él para equilibrar las acciones y dejar los otros recursos como factores que permiten alcanzar el coeficiente de seguridad. De cualquier forma, este último criterio no es normativo, aunque esté bastante de acuerdo con el sentido común.

La existencia de capas continuas de tierras, soleras, losas de hormigón y pavimentos por encima del terreno y por encima del cimiento, es un factor más a tener en cuenta a la hora de contar el peso propio del cimiento. Es evidente que todas estas capas tienen un peso, y que el
Los cimientos de las construcciones tensadas. Ramon Sastre, 2006

peso que está encima del cimiento se tiene que sumar al peso propio del cimiento, a todos los efectos.

No solo eso, sino que la existencia de un peso uniforme sobre el terreno, donde se sitúa el cimiento, aumenta el empuje en reposo que hemos comentado en apartados anteriores. Este aumento del empuje en reposo es un factor favorable, ya que aumenta el rozamiento lateral del cimiento y aumenta, también, la resistencia lateral del cimiento en frente a fuerzas horizontales. Sin embargo, no pasa nada si no tenemos en cuenta este aumento del empuje en reposo, ya que nos sitúa por el lado de la seguridad.

Ahora bien, en aquellos casos donde haga falta apurar el cálculo, es obvio que podremos tener en cuenta este aumento.

1.8 Losa de hormigón (armado)

En el diseño y cálculo de cimientos de construcciones tensadas, tiene una gran importancia la existencia de una losa de hormigón armado estructural. Si no está armada correctamente (siguiendo la normativa vigente) solo se puede considerar como parte del pavimento, es decir, contribuyendo solo con su peso propio en aquella zona que se corresponda con el cimiento.

Ahora bien, en aquellos casos en que esté asegurada, a lo largo del tiempo, la existencia de una losa de hormigón armado, ésta puede contribuir de una forma determinante en el dimensionado del cimiento. Tanto es así, que hará falta ser muy exigente y cuidadoso a la hora de tenerla en cuenta.

Básicamente, una losa de hormigón armado puede contribuir a:

- **Equilibrar las fuerzas horizontales aplicadas al cimiento.** En muchos casos, si la componente horizontal F_x de la fuerza de extracción no es muy grande, y el pavimento cuenta con una losa de hormigón armado suficiente, la fuerza horizontal se ve equilibrada por la resistencia horizontal R_H a compresión que genera el propio pavimento. Esta resistencia a compresión se tiene que compensar con el rozamiento de la propia losa sobre el terreno. Es decir, la losa tiene que tener unas dimensiones suficientemente grandes a fin de equilibrar la fuerza horizontal.

También se puede equilibrar con otra fuerza horizontal de sentido contrario aplicada a la losa en otro cimiento, cosa bastante habitual en las construcciones tensadas.

Otro punto que hace falta considerar es el grosor de la losa del pavimento. Si este grosor es pequeño, se podría provocar fácilmente una deformación por pandeo de la losa. Afortunadamente la mayoría de losas de pavimentos tienen grosores suficientes para evitar este pandeo, pero se trata de un factor que no se puede descuidar en absoluto.
• Equilibrar las fuerzas verticales de tracción, mediante la reacción a cortante R_T de la sección de la losa alrededor del perímetro del cimiento.

Nota:
Podríamos afinar más y considerar el perímetro P aumentado por la mitad del canto de la losa en cada lado:

$$P = 2 \cdot ((a+d)+(b+d))$$

Si no lo hacemos estamos por el lado de la seguridad.

Esta resistencia a cortante depende del hormigón y de la armadura, pero para facilitar el cálculo, y por el lado de la seguridad, podemos prescindir de la colaboración de la armadura. Así pues, hará falta conocer solo la resistencia a cortante del hormigón τ y el grosor útil d (sin fractura) de la losa de hormigón en el perímetro del cimiento.

Para conocer la resistencia a cortante del hormigón τ hará falta aplicar la normativa vigente. La resistencia debida al cortante de una losa de hormigón de grueso útil d será:

$$R_t = 2 \cdot (a + b) \cdot d \cdot \tau$$

Es posible que la resistencia a cortante de la losa pueda llegar a conseguir valores mucho más grandes que los producidos por el peso propio (cimiento, la propia losa y el pavimento) y por la resistencia del rozamiento a extracción. Es por eso que hace falta ser muy cuidadosos en la utilización de este valor y asegurarse que:

- el peso total de la losa y del pavimento exterior a la zona cortante es igual o superior a la resistencia a cortante, ya que si no fuera así se levantaría todo el pavimento antes de que se generara una resistencia como la que se ha calculado.

- al movilizar esta resistencia no se produzca un momento flector sobre la losa que provoque ya no su rotura (lo cual anularía la resistencia por cortante) sino una fisuración en la losa de tal forma que el grosor útil d se vea muy menguado.

Por ejemplo, si suponemos un caso donde $a = b = 1m$; $d = 0,10 m$; $\tau = 5 \text{ kg/cm}^2$ el valor de R_t valdría 20 t. Para generar una resistencia a cortante de 20 t haría falta movilizar una superficie de losa de aproximadamente 45 m² (6,8x6,8). Esto haría que el centro de gravedad del trapecio de pavimento correspondiente a cada cara se encuentre más o menos a unos 2 m del perímetro del cimiento.
Los cimientos de las construcciones tensadas.

Ramon Sastre, 2006

forma iterativa cual es el valor máximo que es capaz de asumir la losa armada existente.

Una recomendación juiciosa podría ser no utilizar más de la mitad del grosor d de la losa como elemento que genera resistencia a cortante. De esta manera damos un margen bastante grande de las posibles fisuraciones. Ahora bien, la mejor solución es estudiar el comportamiento a flexión de la losa y comprobar cual es el grosor de la sección no fisurada en el perímetro del cimiento.

1.9 La losa como cimiento único

Incluso en casos extraordinarios, que hace falta estudiar detenidamente, una losa de hormigón armado puede llegar a ser el único cimiento de una construcción tensada, tanto para fuerzas horizontales, fuerzas verticales de tracción y compresión y momentos flexores.

Es una situación habitual tener que situar una construcción tensada sobre una losa existente, y surge la duda acerca de si esta losa por si sola es o no capaz de servir como cimiento. Otras veces la losa no existe, pero hace falta hacerla por cuestiones de proyecto.

La diferencia más grande que hay entre un cimiento en losa y un cimiento en zapata (o pilote) es la deformación del propio cimiento. En una losa, esta deformación puede ser:

- hacia arriba, separándose del suelo, con lo que las fuerzas de rozamiento horizontal disminuyen, comprobando que no se produzca la ruptura del anclaje por cortante en la losa,
- hacia abajo, generando una reacción del terreno diferente en cada punto de la losa (teoría de los soportes elásticos) y comprobando también el punzonamiento de la losa.

Tanto en un caso como en el otro, en la cimentación por losa de hormigón armado, juega un papel muy importante la armadura de la losa. Normalmente se trata de losas no demasiado gruesas, donde los recubrimientos de las armaduras han de ser grandes (el suelo por un lado y la intemperie por el otro), con lo cual el canto útil se ve bastante reducido. Esto hace que sea difícil precisar las deformaciones de la losa, ya que la fisuración provoca muchos cambios en la rigidez real de la losa.
2. Fuerza vertical de extracción

2.1 Introducción

Se trata del caso más simple. El cimiento está sometido a la fuerza vertical de extracción \(F_y \). A fin de garantizar la estabilidad, el cimiento se opondrá a esta fuerza de diversas formas:

- \(R_w \) por su peso propio
- \(R_p \) por el peso del pavimento que pueda haber sobre el cimiento
- \(R_f \) por rozamiento de los laterales contra el terreno
- \(R_t \) por la resistencia a cortante que pueda provocar la losa del pavimento, si la hay.

Vamos pues a estudiar cada uno de estos factores de estabilización.

2.2 Peso propio

El cimiento estándar más sencillo suele estar formado por un prisma de hormigón, armado ligeramente, de dimensiones \(a, b \) y \(h \), situado a una cota \(f \), siendo:

- \(a, b \) las dimensiones, en planta, del cimiento
- \(h \) la altura del cimiento
- \(f \) la distancia entre la base del cimiento y la cota superior del terreno.

Si el cimiento está enrasado superficialmente con el suelo natural, entonces \(f = h \)

La densidad relativa del hormigón del cimiento \(\gamma \) es un valor entre 2,2 y 2,5, en función de la cantidad de armadura que lleve. Si tomamos un valor conservador podemos utilizar una densidad relativa de 2,3.

Si el cimiento no llega a la superficie, y se rellena el pozo excavado con tierra de densidad \(\gamma_t \), hará falta añadir el peso de esta tierra.

Así pues, la resistencia del cimiento debida al peso propio vale

\[
R_w = a \cdot b \cdot (h \cdot \gamma + (f - h) \cdot \gamma_t)
\]
2.3 Rozamiento

El rozamiento es la fuerza que se genera en las caras laterales del cimiento en el momento que la fuerza de extracción supera el peso propio del cimiento, y este empezaría a subir. Las fuerzas de rozamiento entre dos superficies (hormigón y terreno) dependen de dos factores:

- Fuerza normal (perpendicular) al plano de contacto
- Coeficiente de rozamiento entre las dos superficies

La fuerza normal entre estas dos superficies es el empuje en reposo del terreno sobre el cimiento. Si la zapata está enrasada al suelo el valor total de empuje en reposo, situado a una distancia $2h/3$ de la superficie superior de la zapata, vale

$$E_0 = \frac{1}{2} K_0 \cdot \gamma \cdot h^2$$

Si la zapata es más profunda ($f > h$), este valor aumenta hasta

$$E_0 = \frac{1}{2} K_0 \cdot \gamma \cdot (f^2 - (f - h)^2)$$

y el punto de aplicación de la fuerza E_0 es la profundidad del centro de gravedad del trapecio formado por los empujes sobre el cimiento

$$f - \left[\frac{1}{3} \cdot (f^3 - (f - h)^3) / f^2\right]$$

Así pues, si disponemos de un cimiento prismático $a \cdot b \cdot h$, enrasado al terreno natural por la parte superior, en un suelo de características (γ, ϕ) determinadas, el valor de la resistencia a extracción por rozamiento de las cuatro caras laterales serán:

$$R_f = 2 \cdot (a + b) \cdot \frac{1}{2} K_0 \cdot \gamma \cdot h^2 \cdot c_f$$

siendo c_f el coeficiente de rozamiento terreno-hormigón. Este coeficiente no puede ser superior a la tangente del ángulo de rozamiento interno del suelo.

Ya se ha comentado que, en condiciones normales (hormigonado in situ), se suele aceptar un valor de $c_f = \tan(2\phi/3)$, aunque hay que ir con mucho cuidado ya que este valor puede llegar a cero en diversas situaciones.

2.4 Pavimento

En el caso en que el cimiento esté recubierto por un pavimento, situado sobre el terreno, hará falta evaluar la colaboración de este elemento. (El mismo comentario podríamos hacer en el caso de que la zapata no esté enrasada al terreno y tenga un grosor de tierra por encima)

Si se trata de un elemento discontinuo, incapaz de reaccionar como un “todo” a la fuerza de extracción, solo podremos considerar como contribución el peso del pavimento situado por en-
cima del cimiento. En el caso que hemos comentado hasta ahora, de una zapata de dimensiones \(a \cdot b \cdot h \), la resistencia \(R_p \) será

\[
R_p = a \cdot b \cdot Q_p
\]

siendo \(Q_p \) el peso del pavimento por unidad de superficie (contando también el elemento de fijación: mortero, arena, etc).

Ahora bien, si el pavimento contiene una losa continua (normalmente de hormigón armado) la resistencia a la extracción será muy superior, ya que no solo hace falta vencer la resistencia opuesta por el peso del pavimento, sino que hace falta sumarle la resistencia a cortante de la losa, alrededor del perímetro del cimiento.

\[
R_t \leq 2 \cdot (a + b) \cdot d \cdot \tau
\]

2.5 Resistencia total

Como conclusión y volviendo al principio de este apartado, la resistencia de un cimiento determinado a una fuerza vertical positiva (de extracción) depende de una serie de valores que podemos resumir en esta lista:

- dimensiones del cimiento, normalmente \(a, b, h \) (en el caso de un pilote: \(\varnothing, h \))
- densidad del material del cimiento (normalmente hormigón armado)
- características del suelo que envuelve el cimiento: coeficiente de empuje en reposo \(K_0 \), densidad \(\gamma \), ángulo de rozamiento interno \(\phi \) y cohesión \(C \)
- rugosidad del contacto terreno – cimiento
- si hay pavimento por encima del cimiento
 - peso total del pavimento (por unidad de superficie)
 - si hay una losa de hormigón armado
 - grosor de la losa
 - resistencia a cortante \(\tau \) del hormigón
 - comprobación de la resistencia a flexión de la losa
 - comprobación de la suficiencia del peso total de la losa

siendo el valor final igual a

\[
R_T = R_w + R_t + R_s
\]

2.6 Coeficiente de seguridad

Como en todos los cálculos de construcción, hace falta mantener siempre un margen de seguridad entre las acciones aplicadas y la resistencia de nuestros diseños: el coeficiente de seguridad \(f_s \). En el caso que nos ocupa no podría ser de otra forma. No hay normativas que nos definan un determinado coeficiente de seguridad concreto para este problema, pero el sentido común nos sugiere utilizar valores del orden de 1,5 o superiores.

Una posibilidad, siempre por el lado de la seguridad, es considerar que la fuerza de extracción ha de ser compensada exclusivamente por peso propio (sea del cimiento, del suelo o del pavimento que hay por encima del cimiento), dejando todos los otros recursos (rozamiento, cortante de la losa del pavimento, etc.) para llegar a cumplir con el coeficiente de seguridad establecido.

\[
R_w + R_p \geq F_y
\]
Los cimientos de las construcciones tensadas.

Ramon Sastre, 2006

\[R_T \geq f_s \cdot F_y \]

Creemos que este es un criterio muy sensato y recomendamos seguirlo en la mayoría de casos. Hace falta estar muy seguro de las otras aportaciones \(R_f \) y \(R_s \) para tenerlas en cuenta a la hora de compensar una fuerza de extracción vertical.

2.7 Diseño constructivo

Teniendo en cuenta la diferencia con las cargas habituales de compresión (que empujan el cimiento hacia el suelo), en el caso que nos ocupa hay que fijarse en un hecho muy importante: Las armaduras del cimiento se tienen que disponer de tal forma que eviten la ruptura horizontal del mismo cimiento, ya que en este caso, el peso del cimiento sería menor y no podría compensar la fuerza de extracción \(F_y \).

Una disposición simple consiste en llevar, en forma de V invertida, las armaduras desde el punto de anclaje a la base del cimiento, tal y como se ve en el croquis siguiente.

No hace falta poner un emparrillado a la parte inferior, como hacemos habitualmente, en muchos cimientos, ya que el hormigón de esta zona se encuentra comprimido, debido a la tracción de la armadura en forma de V invertida.

Así mismo, si la armadura del cimiento no conecta directamente con el anclaje del elemento que provoca la fuerza de extracción (cable, tensor, etc.), hace falta comprobar que los elementos de fijación (tacos, pernos, etc.) no puedan provocar una ruptura del hormigón, separando la fijación del resto del cimiento.

2.8 Ejemplos

Caso 1

Se trata de diseñar un cimiento capaz de soportar una fuerza de extracción vertical \(F_y \) de 3 t. Los datos del terreno en el cual se sitúa el cimiento son:

- densidad suelo \(\gamma = 1,9 \text{ t/m}^3 \)
- angulo de rozamiento interno del suelo \(\phi = 35^\circ \)
- rugosidad de las caras laterales de la zapata = normal
- densidad del hormigón = 2,3
Los cimientos de las construcciones tensadas.

• $c_r = \tan \left(\frac{2\phi}{3}\right) = 0,43$
• $K_0 = 0,4$

Suponemos que la zapata está situada debajo un pavimento continuo (de extensión definida, pero suficientemente grande) formada por una losa de hormigón armado de $d = 10 \text{ cm}$ de grosor, mortero y losetas de hormigón, con un peso total de $Q_p = 450 \text{ kg/m}^2$.

Presuponemos una zapata de dimensiones, en planta de $1 \times 1 \text{ m}$. El peso del pavimento será:

$$R_p = a \cdot b \cdot Q_p = 1 \cdot 1 \cdot 0,45 = 0,45 \text{ t}$$

Si queremos que el peso propio total compense la fuerza de extracción, hará falta que el peso del cimiento complete el que falta hasta a les 3 t.

$$R_w = 1 \cdot 1 \cdot h \cdot 2,3 = 3 - 0,45 = 2,55 \text{ t} \quad h = 1,1 \text{ m}$$

Sabemos pues que la zapata de hormigón será de $1 \times 1 \times 1,1 \text{ m}$. ahora hace falta comprobar que el rozamiento lateral y el cortante de la losa de hormigón son suficientes para tener un coeficiente de seguridad de $1,5$. La resistencia de rozamiento será

$$R_r = 2 \cdot (a+b) \cdot \frac{1}{2} K_0 \cdot \gamma \cdot h^2 \cdot c_r = 0,79 \text{ t}$$

Por lo tanto la contribución del cortante de la losa del pavimento hará falta que complete lo que falta hasta el valor de extracción mayorado por el coeficiente de seguridad: $f_s \cdot F_y = 1,5 \cdot 3 = 4,5 \text{ t}$

$$R_w + R_p + R_r = 3,79 \text{ t}$$

$$R_r = 4,5 - 3,79 = 0,71 \text{ t}$$

$$R_r = 2 \cdot (a + b) \cdot d \cdot \tau = 0,71 \text{ t}$$

$$\tau = 0,71 / 0,4 = 1,78 \text{ t/m}^2 \quad = 0,178 \text{ kg/cm}^2$$

que es un valor de resistencia a cortante perfectamente asequible para cualquier tipo de hormigón.

Como valor de referencia diremos que de acuerdo con l’EHE-98, un hormigón tipo HA-35 tiene una resistencia a cortante de 5 kg/cm^2 aproximadamente.

Caso 2

Suponemos el mismo ejemplo anterior, pero en este caso asumimos que no hay ningún tipo de pavimento por encima del cimiento. Se nos pueden plantear dos posibilidades:

2 a) El rozamiento entre cimiento y el terreno se puede ver afectado por la lluvia o por la retracción.

Es un caso bastante típico, sobre todo en terrenos arcillosos. Tanto si llueve (la arcilla mojada resbala sobre la pared del cimiento) como si hay sequía y el terreno tiene retracción (el suelo se separa y no toca la pared del cimiento) no podemos contar con la resistencia del rozamiento lateral del cimiento, En este caso hará falta que el peso del cimiento sea capaz de igualar la fuerza de extracción mayorada:
Los cimientos de las construcciones tensadas.

Ramon Sastre, 2006

\[R_w = f_s \cdot F_y = 1,5 \cdot 3 = 4,5 \, t \]

Si seguimos considerando un cimiento de base 1 x 1 hará falta una altura \(h \) tal que

\[h = 4,5 / 2,3 = 1,95 \, m \]

Seguramente será mucho más conveniente, des del punto de vista constructivo, hacer un cimiento aproximadamente cúbico

\[a = b = h = \sqrt[3]{(4,5 / 2,3)} = 1,25 \, m \]

2 b) Podemos seguir contando con el rozamiento lateral del cimiento, ya que no se trata de terrenos retráctiles ni de terrenos que pierdan el rozamiento cuando se mojan.

En este caso, es interesante tener un cimiento profundo, ya que de esta manera aumentaremos la superficie de rozamiento y la fuerza (ya que depende del cuadrado de \(h \)).

Si seguimos considerando un cimiento de planta 1 x 1 m, ya hemos visto en el caso 1 que no teníamos suficiente con una zapata de 1,1 m de profundidad, ya que ni con el peso propio del pavimento era suficiente. Sabemos también que sin rozamiento necesitaríamos una profundidad de 1,95 m. Por lo tanto probaremos con un valor intermedio: \(h = 1,5 \, m \).

\[R_w = 1 \cdot 1 \cdot 1,5 \cdot 2,3 = 3 - 0,45 = 3,45 \, t \]

Hace falta entonces que el rozamiento complete la resistencia hasta \(f_s \cdot F_y = 4,5 \, t \)

\[R_r \geq 4,5 - 3,45 = 1,05 \, t \]

\[R_r = 2 \cdot (a+b) \cdot \frac{1}{2} \cdot K_0 \cdot \gamma \cdot h^2 \cdot c_r = 2 \cdot 0,4 \cdot 1,9 \cdot 1,5^2 \cdot 0,43 = 1,47 \, t \]

I efectivamente el valor obtenido es superior al que se necesitaba. Por lo tanto una zapata de 1x1x1,5 m será suficiente para soportar la fuerza de extracción de 3T.

Si \(h = 1,4 \) entonces

\[R_w = 3,22 \, t \; ; \; R_r = 1,28 \, t \; >> \; R_w + R_r = 4,5 \]

que es un valor igual al que se necesita, y por lo tanto, demasiado ajustado para un cálculo normal.
3. Fuerza inclinada de extracción

3.1 Introducción

En este caso la fuerza de extracción F_t tiene dos componentes, una vertical F_y y una horizontal F_x. La fuerza F_y ya ha sido estudiada en el capítulo anterior (aunque más adelante volveremos a considerarla a efectos del giro de la zapata). Hará falta que nos fijemos ahora con lo que pasa con la fuerza F_x.

A fin de garantizar la estabilidad, el cimiento se opondrá a esta fuerza F_x de diversas formas:

- R_e: resistencia lateral del terreno, ejercida por el empuje en reposo E_0
- R_f: por rozamiento de la base R_b y los laterales R_l del cimiento con el terreno
- R_c: por la resistencia a compresión que pueda soportar el pavimento, si hay.

$$R_x = R_e + R_f + R_c$$

Vamos a estudiar cada uno de estos factores de estabilización.

3.2 Resistencia lateral del terreno

Se trata del recurso más importante y más fiable a la hora de estabilizar la fuerza horizontal aplicada al cimiento. En muchos casos no hay pavimento, por lo tanto $R_c = 0$, y si la fuerza vertical de extracción F_y es igual al peso del cimiento (lo cual ya hemos visto que es más que...
probable), el rozamiento de la base del cimiento también será cero \(R_b = 0 \). Si añadimos la posibilidad que el rozamiento de las paredes laterales \(R_l \) también sea cero, debido a la lluvia o humedad del terreno, tendremos que \(R_x = R_e \).

En el capítulo anterior hemos comentado el valor del empuje en reposo \(E_0 \) de un terreno sobre el cimiento. Nos era necesario para considerar el rozamiento vertical entre la cara del cimiento y el terreno. En el caso presente no nos interesa el rozamiento sino el propio empuje en reposo \(E_0 \), ya que es el que se tiene que oponer al desplazamiento horizontal de la zapata.

Si la fuerza \(F_x \) superase la resistencia total \(R_x \) del cimiento se produciría un desplazamiento del cimiento hacia el terreno y, automáticamente, el terreno desarrollaría una resistencia mucho mayor, llamado empuje pasivo \(E_p \). Si no contamos con este empuje pasivo es debido al hecho que, para que se manifieste este empuje, hace falta que el cimiento se desplace y eso no suele interesarnos en construcciones estables.

En construcciones tradicionales, un desplazamiento horizontal del cimiento provoca inmediatamente fisuras o grietas del mismo orden que el movimiento que se ha producido. Si tenemos en cuenta que este desplazamiento puede ser fácilmente del orden de 10 a 20 mm, ya se ve que es completamente impensable aprovechar este empuje pasivo en aquel tipo de edificios.

En construcciones tensadas, el problema no es tan grave, ya que no hay elementos susceptibles de tener grietas (paredes, tabiques, etc.). No obstante, un desplazamiento grande del cimiento provocaría una pérdida de tensión en los elementos de tracción (cables, lonas, etc.), por lo tanto, tampoco es aconsejable utilizar el empuje pasivo.

Ahora bien, es cierto que el empuje pasivo puede utilizarse, en algunos casos, como recurso para obtener el correspondiente coeficiente de seguridad para la resistencia horizontal, ya que solo en situaciones excepcionales entraría en carga, y solo con valores un poco por encima del empuje en reposo. Además, en estas situaciones excepcionales siempre quedaría el recurso de re-tensar la estructura: los cables, la membrana, etc.

3.3 Rozamiento

En el capítulo anterior ya hemos hecho las consideraciones generales sobre el rozamiento que se genera entre las caras laterales del cimiento y del terreno. En este capítulo comentaremos solo las diferencias que puede haber en el caso de una fuerza de extracción inclinada.

- El rozamiento (tanto vertical como horizontal) de las caras laterales es igual al que hemos considerado en el caso de la fuerza de extracción vertical. Habrá que hacer sola mente una reflexión en el caso que se supere la resistencia del empuje en reposo y el cimiento se desplace un poco: el rozamiento de la cara opuesta al empuje en reposo sería cero, ya que no hay contacto entre el cimiento y el terreno. Ahora bien, en general no superaremos nunca la resistencia del terreno producida por el empuje en reposo.

- El rozamiento (exclusivamente horizontal) de la base del cimiento con el terreno solo se puede tener en cuenta cuando el peso propio del cimiento, y el pavimento que hay encima, superen la fuerza vertical de extracción, utilizando para el cálculo solo la diferencia entre estas dos fuerzas.
3.4 Pavimento

En el caso que el cimiento esté recubierto por un pavimento continuo sobre la superficie del terreno donde se encuentra situado, hará falta evaluar la colaboración de este elemento. Todo aquello que tenga que ver con la fuerza vertical de extracción ya ha sido evaluado en el capítulo anterior. En este capítulo haremos referencia, solo, a la fuerza horizontal.

La resistencia a compresión de la losa de hormigón suele ser muy grande. Si consideramos un hormigón tipo HA-25, su resistencia estará alrededor de 250 kg/cm². Por lo tanto una losa de hormigón de 10cm de grosor sería capaz de soportar una fuerza horizontal de 10 t solo con una anchura de 4 cm.

De cualquier forma, hace falta comprobar que las dimensiones globales de la losa sean suficientes para generar una resistencia de rozamiento igual a la fuerza horizontal aplicada.

Para obtener una resistencia de 10 t, por ejemplo, consideraremos un coeficiente de rozamiento de 0,43 (valor normal), y hará falta que el peso de la losa vinculada al cimiento estudiado sea

\[P = \frac{F_x}{0,43} = \frac{10}{0,43} = 23,25 \ t \]

equivalente a un volumen

\[V = 23,25 \ t / 2,3 \ t/m^3 = 10 \ m^3 \text{ aprox.} \]

que corresponde a una superficie de losa de

\[S = 10 / 0,1 = 100 \ m^2 \quad (\text{aprox.} \ 10 \times 10 \ m) \]

Otro punto que hace falta considerar es el grosor de la losa del pavimento. Si este grosor es pequeño se podría provocar fácilmente una deformación por pandeo de la losa. Afortunadamente, la mayoría de losas de pavimentos tienen grosores suficientes para evitar este pandeo, pero se trata de un factor que no se puede obviar en absoluto.

3.5 Resistencia total

Tal y como hemos hecho en el caso de la fuerza de extracción vertical, intentaremos resumir el comportamiento de un cimiento ante una fuerza de extracción inclinada. En cuanto a la componente vertical podemos repetir el mismo listado de valores, de los cuales depende su resistencia:

- dimensiones del cimiento, normalmente \((a, b, h)\) o \((\phi, h)\)
- densidad del material del cimiento (normalmente hormigón armado)
- características del suelo que envuelve el cimiento:
 - coeficiente del empuje en reposo \(K_0\)
 - densidad \(\gamma\)
 - ángulo de rozamiento interno \(\phi\)
 - cohesión \(C\)
- rugosidad del contacto terreno – cimiento
- si hay pavimentos por encima del cimiento
 - peso total del pavimento (por unidad de superficie)
 - si hay una losa de hormigón armado
 - grosor de la losa
 - resistencia a cortante \(\tau\) del hormigón
- comprobación de la resistencia a flexión de la losa
Los cimientos de las construcciones tensadas.

Ramon Sastre, 2006

• comprobación de la suficiencia del peso total de la losa

\[F_y < R_{Tv} = R_w + R_{iv} + R_s(\tau) \]

En cuanto a la componente horizontal podemos añadir

• si hay pavimento por encima del cimiento: resistencia a compresión \(\sigma \) del hormigón

\[F_x < R_{th} = R_{eo} + R_{bh} + R_s(\sigma) \]

3.6 Coeficiente de seguridad

En el estudio de la fuerza vertical hemos comentado que el coeficiente de seguridad aplicable puede ser el genérico de valor 1,5 o superior y como es aconsejable compensar la fuerza de extracción vertical \(F_y \) con peso propio (cimiento y pavimento, si los hay), dejando la resistencia de rozamiento y cortante de la losa de pavimento como valores que nos ayudan a cumplir con el mencionado coeficiente de seguridad.

En el caso de la fuerza horizontal \(F_x \) podemos hacer una consideración similar, en el sentido que podemos considerar la resistencia del terreno a empuje pasivo (muy superior al empuje en reposo) como un factor que nos ayuda a llegar a cumplir con el factor de seguridad, pero nunca como resistencia básica en frente a la fuerza \(F_x \). El tema de la resistencia a compresión del pavimento es más difícil de aconsejar, ya que a diferencia del cortante, esta resistencia no se ve demasiado afectada por posibles fisuraciones de la losa y, por lo tanto, es un valor bastante seguro que podemos tener siempre en cuenta.

Un criterio bastante razonable sería confiar con el empuje en reposo del terreno en una proporción determinada \((R_{eo} \geq 0,5 \cdot F_x; \; R_{eo} \geq 0,75 \cdot F_x; \; ...) \). No obstante, en la mayoría de los casos, donde la fuerza horizontal no es grande, es muy posible que la losa de hormigón del pavimento (si la hay) sobrepase de forma exagerada la resistencia horizontal necesaria. En este caso sería absurdo prescindir de esta aportación y dedicarse a buscar una resistencia por empuje en reposo del terreno que obligase a hacer más grande el cimiento. Así pues:

\[R_{eo} + R_s(\sigma) \geq F_x \quad \text{(con losa de hormigón)} \]

\[(R_{eo} \geq F_x) \quad \text{(sin losa de hormigón)} \]

\[R_{th} = R_{eo} + R_{bh} + R_s(\sigma) \geq f_s \cdot F_x \quad \text{(sin contar con el empuje pasivo)} \]

\[R_{th} = R_{eo} + R_{bh} \quad \text{(con el empuje pasivo)} \]

3.7 Giro del cimiento

Además de las consideraciones constructivas comentadas en el capítulo anterior, (respecto a la armadura del cimiento correspondiente a fuerzas de extracción), hará falta que nos paremos, cuando existan fuerzas horizontales, a estudiar el tema del giro del cimiento.

Si hay un solera de hormigón armado capaz de contrarrestar la fuerza horizontal \(F_x \) al estar estas dos fuerzas prácticamente alineadas, las dos acciones se anulan y no provocan ningún giro. Si no es así, el equilibrio de fuerzas entre la acción horizontal \(F_x \) y la resistencia del empuje en reposo \(R_{eo} \) no están alineadas y por lo tanto se genera un momento.

El caso óptimo sería aquel donde el anclaje del cable, que provoca tracción, se encuentre en una posición determinada, tal que las fuerzas de tracción, el peso propio de la zapata y el empuje en reposo del terreno pasen por un punto determinado. De esta manera no se genera
ningún momento desequilibrante y por lo tanto no habrá giro de la zapata.

Ahora bien, hace falta reconocer que este no es el caso habitual, ya que no siempre es posible colocar este anclaje de forma que se produzca esta concordancia. Normalmente, para simplificar la construcción y evitar errores, el anclaje del cable se suele colocar en el centro de la zapata. De esta manera, aunque haya equilibrio de fuerzas, se genera un momento que tiende a volcar la zapata.

El centro de giro real de este bloque de hormigón es muy complicado de determinar, ya que depende de la comprensibilidad del terreno que envuelve la zapata, pero es evidente que este punto se encuentra en la pared de contacto, donde se produce el empuje en reposo que se opone al desplazamiento. Y, además, muy próximo al punto de la resultante del empuje, es decir, hacia los dos tercios de la profundidad de la zapata.

Si tomamos momentos respecto a este punto, el momento de vuelco será

\[M_b = F_x \cdot 2/3 \cdot h \]

y la forma de equilibrarlo más fácil es utilizar el exceso de peso propio (cimiento y pavimento, si los hay), que provoca un momento contrario equilibrante.
Los cimientos de las construcciones tensadas. Ramon Sastre, 2006

\[M_e = (R_w - F_y) \cdot \frac{1}{2} \cdot a \]

De esta forma obtenemos un coeficiente de seguridad \(f_s \) igual a

\[f_s = \frac{M_e}{M_b} \]

Si el valor \(f_s \) no fuese suficiente, 1,5 por ejemplo, habría que aumentar el peso de la zapata. Pero si modificamos las dimensiones de la zapata podemos hacer otras consideraciones:

- Si aumentamos la longitud \(a \), aumentaríamos el brazo de palanca del momento equilibrante.
- Si aumentamos la anchura \(b \), aumentaríamos el valor del empuje en reposo.
- Si aumentamos la profundidad \(h \), aumentaríamos el valor del empuje en reposo pero también el valor del momento de vuelco \(M_e \), aunque a partir de una profundidad grande (como es el caso de un pilote), el cimiento ya no se comportaría como un sólido totalmente rígido, sino que empezarían a generarse deformaciones por flexión y, al fin y al cabo, el análisis sería mucho más complejo.

3.8 Ejemplos

Se trata de diseñar un cimiento capaz de soportar una fuerza de tracción inclinada 63° con los valores siguientes

\[F_t = 6,23 \, t \quad (F_x = 2,5 \, t \ ; \ F_y = 5 \, t) \]

Los datos del terreno en el cual se sitúa el cimiento son:

- densidad suelo \(\gamma = 1,9 \) t/m³
- angulo de rozamiento interno del suelo \(\varphi = 35^\circ \)
- rugosidad de las caras laterales de la zapata = normal
- densidad del hormigón = 2,3
- \(f(\varphi) = \tan \left(\frac{2\varphi}{3} \right) = 0,43 \)
- \(K_0 = 0,4 \)

Caso 1

Suponemos que la zapata se encuentra en una zona donde no hay ningún tipo de pavimento por encima del cimiento. Por lo tanto la lluvia afecta directamente el terreno y puede anular la capacidad de rozamiento entre la zapata y el terreno continuo.

Nos podemos plantear diversas posibilidades:

1a) El anclaje del cable que provoca la tracción inclinada se sitúa sobre el cimiento de forma que la dirección del cable, el eje vertical del centro de gravedad y la resultante del empuje en reposo del terreno se encuentran en un punto. De esta forma evitamos el vuelco del cimiento. Esto obliga a dimensionar el cimiento cuidadosamente a fin de que el anclaje no quede fuera de la cara superior de la zapata.

Teniendo en cuenta que el peso de la zapata tiene que ser como mínimo de 5t, necesitaremos un volumen aproximado de \(V = 5 / 2,3 = 2,2 \) m³. Predimensionaremos una zapata de 1,5x1x1,5 m con la configuración siguiente:

- \(a = 1,5 \) (dimensión en planta en la dirección de la fuerza \(F_x \))
Los cimientos de las construcciones tensadas. Ramon Sastre, 2006

- \(b = 1 \) (dimensión en planta perpendicular a la dirección de la fuerza \(F_x \))
- \(h = 1,5 \) (profundidad de la zapata)

Teniendo en cuenta que la resultante del empuje en reposo está a dos tercios de la profundidad de la zapata, es decir a 1 m (2/3 de 1,5), el anclaje se situará a 50 cm del eje de la zapata, es decir a 25 cm del extremo. Un poco justo pero posible.

Pasamos a comprobar los coeficientes de seguridad ante las dos fuerzas.

El empuje en reposo de la cara que se opone al desplazamiento es

\[E_0 = b \cdot \frac{1}{2} \cdot K_0 \cdot \gamma \cdot h^2 = 0,5 \cdot 0,4 \cdot 1,9 \cdot 1,5^2 = 0,855 \text{ t} \]

El rozamiento horizontal entre dos caras laterales y el terreno

\[R_{fl} = 2 \cdot a \cdot \frac{1}{2} \cdot K_0 \cdot \gamma \cdot h^2 \cdot f(\phi) = 1,5 \cdot 0,4 \cdot 1,9 \cdot 1,5^2 \cdot 0,43 = 1,10 \text{ t} \]

El rozamiento horizontal en el fondo de la zapata, teniendo en cuenta el peso de la zapata

\[R_w = (1 \cdot 1,5 \cdot 1,5) \cdot 2,3 = 5,17 \text{ t} \]

\[R_{ff} = (F_y - R_w) \cdot f(\phi) = 2,763 \cdot 0,43 = 1,188 \text{ t} \]

En total la resistencia a la fuerza horizontal es

\[E_0 + R_{fl} + R_{ff} = 3,571 \]

Con estos valores el coeficiente de seguridad en frente a las fuerzas horizontales es

\[f_s = 3,571 / 2,5 = 1,423 \]

Vemos que no se llega al típico 1,5 por muy poco. Si tenemos en cuenta que en caso de superarse el equilibrio horizontal, se desarrollaría una resistencia pasiva del terreno \(E_p \) que fácilmente puede llegar a valores del doble del empuje en reposo \(E_{0r} \), podemos considerar este valor de \(f_s \) (1,423) como aceptable.

En cuanto a la fuerza vertical vemos que solo con el peso propio de la zapata el coeficiente de seguridad ya supera el valor de 1,5, sin contar con ningún tipo de rozamiento lateral.

\[F_s = 7,763 / 5 = 1,55 \]

1b) Suponemos el mismo caso que 1a), pero esta vez no contaremos el rozamiento lateral de la zapata. Esto puede ser debido a dos razones: el terreno es susceptible de tener retracción (sobretodo en arcillas) o la lluvia puede mojar el terreno en profundidad y anular el rozamiento. En estas circunstancias
Los cimientos de las construcciones tensadas.

Ramon Sastre, 2006

\[E_0 = b \cdot \frac{1}{2} \cdot K_0 \cdot \gamma \cdot h^2 = 0,75 \cdot 0,4 \cdot 1,9 \cdot 1,5^2 = 1,283 \ t \]

\[R_w = (1,5 \cdot 1,5 \cdot 1,5) \cdot 2,3 = 7,763 \ t \]
\[R_\sigma = (F_y - R_w) \cdot f(\phi) = 2,763 \cdot 0,43 = 1,188 \ t \]

\[E_0 + R_\sigma = 2,471 \ t \]

Con estos valores no llegamos a compensar la fuerza horizontal \(F_x = 2,5 \ t \). Hace falta pues volver a aumentar las dimensiones del cimiento. Aumentaremos el frente de la zapata que recibe el empuje en reposo del terreno, \(b = 2m \)

\[E_0 = b \cdot \frac{1}{2} \cdot K_0 \cdot \gamma \cdot h^2 = 1 \cdot 0,4 \cdot 1,9 \cdot 1,5^2 = 1,71 \ t \]
\[R_w = (1,5 \cdot 2 \cdot 1,5) \cdot 2,3 = 10,35 \ t \]
\[R_\sigma = (R_w - F_y) \cdot f(\phi) = 5,35 \cdot 0,43 = 2,3 \ t \]

\[E_0 + R_\sigma = 4,01 \ t \]
\[f_s = 4,01 / 2,5 = 1,6 \]

valor más que suficiente y que, incluso, permitiría ajustar un poco la medida del cimiento.

Caso 2

Suponemos que el anclaje del cable que provoca la fuerza de extracción se sita en el centro de la zapata. De esta forma, como ya hemos comentado, aunque haya equilibrio de fuerzas, se genera un momento que tiende a volcar la zapata.

Así, si tomamos de ejemplo el caso 1b), pero colocando el anclaje en el centro de la zapata, veremos que tenemos un momento de vuelco \(M_b \)

\[M_b = F_x \cdot 2/3 \cdot h = 2,5 \cdot 2/3 \cdot 1,5 = 2,5 \ tm \]

y un momento contrario equilibrante \(M_e \)

\[M_e = (R_w - F_y) \cdot \frac{1}{2} \cdot a = (10,35 - 5) \cdot \frac{1}{2} \cdot 1,5 = 4,01 \ tm \]

y un coeficiente de seguridad \(f_s \)

\[f_s = 4,01 / 2,5 = 1,6 \]

que son valores aceptables. Si no fuese así, habría que aumentar el peso de la zapata. Pero además podemos hacer las consideraciones siguientes:

- Si aumentásemos la longitud \(a \), aumentaríamos el brazo de palanca del momento equilibrante.
- Si aumentásemos la anchura \(b \), aumentaríamos el valor del empuje en reposo.
- Si aumentásemos la profundidad \(h \), aumentaríamos el valor del empuje en reposo pero también el valor del momento de vuelco \(M_e \), aunque a partir de una profundidad grande, el cimiento ya no se comportaría como un sólido totalmente rígido, sino que empezaría a generarse deformaciones por flexión y al fin y al cabo todo el análisis sería mucho más complejo.
Caso 3

Suponemos que el anclaje del cable que provoca la fuerza de extracción se sitúa en el centro de la zapata, pero que por encima del cimiento hay un pavimento que incorpora una losa de hormigón armado de 10 cm de grosor, con un peso total del pavimento de 350 kg/m².

Con un hormigón **HA-25**, solo nos hace falta una superficie de $2500 / 250 = 10$ cm² para soportar la fuerza horizontal, valor ridículo en una losa de 10 cm de grosor. Ahora bien, para que el rozamiento R_{fh} de la losa del pavimento con el suelo compense esta fuerza, necesitaremos un peso total R_{wl} de la losa de

$$R_{fh} = R_{wl} \cdot f(\phi) \quad \Rightarrow \quad R_{wl} = R_{fh} / f(\phi) = 2,5 / 0,43 = 5,81 \text{ t}$$

que corresponde a una superficie de la losa de $5,81$ t / $2,5$ t/m³ = $2,32$ m², lo cual es una superficie muy pequeña y por lo tanto seguro que podemos contar con este rozamiento de la losa y el terreno.

Así, si la fuerza horizontal ya está compensada, el problema se resuelve equilibrando la fuerza vertical y este ejercicio ya lo hemos hecho en el capítulo anterior. Rápidamente podemos hacer el análisis y obtener unos valores comparativos con el caso 1 y 2.

El peso de la zapata será igual a la fuerza vertical de extracción F_y menos el peso del pavimento. Si suponemos una zapata de superficie en planta $1,2 \times 1,2$ m², el peso del pavimento será

$$R_{wp} = 1,2 \cdot 1,2 \cdot 0,35 = 0,5 \text{ t}$$

$$R_w = F_y - R_{wp} = 5 - 0,5 = 4,5 \text{ t}$$

si consideramos la densidad del hormigón del cimiento de 2,3 t/m³ tendremos que

$$V = 4,5 / 2,3 = 1,96 \text{ m³}$$

$$h = 1,96 / (1,2 \cdot 1,2) = 1,36 \text{ m}$$

por lo tanto la zapata tendrá unas dimensiones de $1,2\times1,2\times1,4$ m. En este caso no nos hará falta preocuparnos por el coeficiente de seguridad a la extracción vertical, ya que la resistencia a cortante de una losa de hormigón armado de 10 cm de grosor y un perímetro de $1,2\times1,2$ m, es muy superior al que necesitaríamos.

Resumiendo y comparando los resultados tenemos

<table>
<thead>
<tr>
<th>caso</th>
<th>pavimento</th>
<th>anclaje</th>
<th>rozamiento</th>
<th>dimensiones zapata (m)</th>
<th>volumen zapata (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>NO</td>
<td>lateral</td>
<td>SI</td>
<td>1,5x1,5x1,5</td>
<td>3,375</td>
</tr>
<tr>
<td>1b</td>
<td>NO</td>
<td>lateral</td>
<td>NO</td>
<td>1,5x2,0x1,5</td>
<td>4,5</td>
</tr>
<tr>
<td>2</td>
<td>NO</td>
<td>centrado</td>
<td>NO</td>
<td>1,5x2,0x1,5</td>
<td>4,5</td>
</tr>
<tr>
<td>3</td>
<td>SI</td>
<td>centrado</td>
<td>SI</td>
<td>1,2x1,2x1,4</td>
<td>2,016</td>
</tr>
</tbody>
</table>
4. Fuerza vertical de compresión

4.1 Introducción

Este tipo de cimiento es el que más se parece a los cimientos del al construcción tradicional. En estos casos, la carga vertical es mucho más importante que la fuerza horizontal o el momento. El cálculo del cimiento se reduce prácticamente a buscar una superficie de contacto que produzca una tensión sobre el terreno menor que el valor llamado tensión admisible.

\[\frac{N}{A} \leq \sigma_s \]

siendo

- \(N \) = carga vertical
- \(A \) = área en planta del cimiento
- \(\sigma_s \) = tensión admisible del terreno

Fíjémonos que en este caso, a diferencia de la fuerza de extracción, no contemplamos en absoluto el rozamiento de las caras laterales del cimiento. La razón es que el cimiento no tiene tendencia a desplazarse. Cuando estiramos, el cimiento es susceptible de moverse hacia arriba, pero cuando empujamos hacia abajo el cimiento no se mueve (el asentamiento no se considera un movimiento que provoque rozamiento). En todo caso si siguiésemos empujando el terreno se rompería, de forma local o de forma generalizada, y obtendríamos el valor de la carga o tensión de rotura. Generalmente el valor de la tensión admisible se obtiene aplicando un coeficiente de seguridad de 3 ó 4 a la tensión de ruptura.

4. Consideraciones particulares

A pesar de las similitudes, el cimiento de una carga vertical a compresión en una construcción tensada tiene una serie de particularidades que hay que señalar.

1. En las construcciones tradicionales, el peso propio y las cargas permanentes suelen ser muy importantes. Generalmente más importantes que las sobrecargas. Eso hace que el asentamiento del cimiento sea un factor importante de diseño. Muchas veces es el factor más importante de diseño, y no solo por la magnitud de la carga, sino por la duración de la misma, lo cual provoca la consolidación del terreno, es decir un asentamiento diferente que hace falta sumar al asentamiento inicial (elástico).

En las construcciones tensadas, las cargas más importantes son las de nieve y las de viento. Las dos son sobrecargas de corta duración, las cuales no dan tiempo a ninguna consolidación del terreno.

2. La tensión admisible del terreno es un valor que depende de los datos obtenidos en el estudio geotécnico. En estos estudios hace falta contemplar una profundidad suficiente de terreno a fin de prever capas blandas que puedan provocar asentamientos. Los asentamientos en las construcciones tradicionales pueden provocar fisuras o grietas muy importantes, sobretodo si hay asentamientos diferenciales. En las construcciones
Los cimientos de las construcciones tensadas.

Ramon Sastre, 2006

tensadas los asentamientos (si llega a haberlos) no provocan grietas ni fisuras. Lo que provocarían es un destensado de la estructura, que siempre tiene una reparación más fácil, ya que solo hace falta retensarla. Además los asentamientos diferenciales no tienen ningún significado especial en una estructura tensada.

3. Por lo tanto, habrá que pensar que muchos de los valores de tensión admisible utilizados para construcciones tensadas están muy (¿demasiado?) por el lado de la seguridad si se aplican a las construcciones tensadas. De hecho, hace falta calcular la tensión admisible del terreno en función de los factores de rotura del terreno (rotura generalizada, rotura local o rotura por punzonamiento) y prescindir bastante de la magnitud de los asientos, sobre todo de los asientos diferentes.

Como valores de referencia podemos utilizar los que nos daba la norma española NBE-AE/88, ya obsoleta tras la aparición de Código Técnico de la Edificación. Hay que notar que la propia norma señalaba que estos valores no garantizan un asentamiento tolerable para la edificación y que hace falta comprobar este apartado en cálculo separado. Ya hemos comentado antes la repercusión mucho menor en los casos de construcciones tensadas.

<table>
<thead>
<tr>
<th>Naturaleza del terreno</th>
<th>Presión admisible del terreno en kg/cm², según la profundidad de la cimentación en m.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1 Rocas (sanas, aunque pueden tener alguna grieta)</td>
<td></td>
</tr>
<tr>
<td>No estratificadas</td>
<td>40</td>
</tr>
<tr>
<td>Estratificadas</td>
<td>12</td>
</tr>
<tr>
<td>2 Terrenos sin cohesión (consolidados)*</td>
<td></td>
</tr>
<tr>
<td>Graves</td>
<td>4</td>
</tr>
<tr>
<td>Arenosos gruesos</td>
<td>2,5</td>
</tr>
<tr>
<td>Arenosos finos</td>
<td>1,6</td>
</tr>
<tr>
<td>3 Terrenos coherentes</td>
<td></td>
</tr>
<tr>
<td>Arcillas dures</td>
<td>-</td>
</tr>
<tr>
<td>Arcillas semiduras</td>
<td>-</td>
</tr>
<tr>
<td>Arcillas blandas</td>
<td>-</td>
</tr>
<tr>
<td>Arcillas fluidas</td>
<td>-</td>
</tr>
<tr>
<td>4 Terrenos deficientes</td>
<td></td>
</tr>
<tr>
<td>Barros</td>
<td>En general resistencia nula, salvo que se determine experimentalmente el valor admisible.</td>
</tr>
<tr>
<td>Terrenos orgánicos</td>
<td></td>
</tr>
<tr>
<td>Rellanos sin consolidir</td>
<td></td>
</tr>
</tbody>
</table>

(*) Observaciones:

a) Los valores indicados se refieren a terrenos consolidados que requieren el uso de pico para removerlos. Para terrenos de consolidación mediana en los cuales la pala penetra con dificultad, los valores anteriores se multiplicaran por 0,8. Para terrenos sueltos, que se remueven fácilmente con la pala, los valores indicados se multiplicaran por 0,5.

b) Los valores indicados corresponden a una anchura de cimiento igual o superior a 1m. Si se trata de anchuras inferiores, la presión se multiplicará por el ancho del cimiento expresado en metros.

c) Cuando el nivel freático se encuentre a una distancia de la superficie de soporte menor a su anchura, los valores de la tabla se multiplicaran por 0,8.
4.3 Diseño constructivo

En este caso, también nos tendremos que remitir a la tipología constructiva normal de los cimientos de la construcción tradicional.

Dado que la mayor parte de las veces el elemento que transmite la carga vertical es un elemento metálico (tubo de acero), hará falta diseñar una placa de apoyo encima del cimiento. Esta placa irá fijada al cimiento a través de unos espárragos o conectores. Como la fuerza horizontal es nula estos espárragos o conectores prácticamente no trabajan.

El propio cimiento llevará una armadura en la base, una parrilla que sea capaz de absorber la tracción que generan las bielas de compresión que van desde la placa de apoyo hasta la base del cimiento. Normalmente, por razones de durabilidad, se recomienda colocar una capa de hormigón de limpieza en la base del cimiento, un correcto recubrimiento de las armaduras de la parrilla (más de 5 cm) y un diámetro mínimo de las barras de 14 ó 16 mm.

4.4 Ejemplos

Realmente el ejemplo de carga vertical no tiene demasiado interés. Se reduce a calcular la sección en planta del cimiento que produce una tensión de contacto inferior a la admisible, y a decidir una profundidad del cimiento con un mínimo de:

- 80 cm, profundidad a la cual se considera que ya no afecta la lluvia ni las heladas.
- La mitad del ancho del cimiento, valor que suele asegurar el comportamiento de la zapata como elemento rígido. (Es cierto, sin embargo, que en casos donde el terreno es muy deformable, puede ser mejor utilizar una zapata menos profunda de comportamiento flexible, pero eso complica mucho más el diseño y queda fuera del alcance de este texto).

Así pues, supongamos un caso donde:

- carga vertical a cimentar: 30 T
- terreno: arenoso grueso

Como valor de referencia, según la Norma Básica NBE/AE-88, a una profundidad de un metro, este tipo de terreno tendría una tensión admisible de 3,2 kg/cm². Entonces, la sección en planta del cimiento tendrá que ser igual o superior a

\[A = \frac{Fv}{\sigma_a} = \frac{30}{32} = 0,938 \ m^2 \]

\[a = \sqrt{0,625} = 0,97 \ m \approx 1 \ m \]

\[h = 0,8 \ m \geq (a / 2) \]

Por lo tanto la zapata será de 1 x 1 x 0,8 m
5. Fuerza inclinada de compresión

5.1 Introducción

La fuerza inclinada de compresión es un caso muy común en las construcciones tensadas. De hecho, suele ser más habitual que la comprensión vertical. Los mástiles inclinados se utilizan, sobretodo, para aumentar el brazo de palanca del momento que forman las reacciones verticales en la base de los mástiles y de los vientos en la mayoría de soportes (bipodes o trípodes) perimetrales.

Si descomponemos la fuerza inclinada F_t en sus componentes verticales F_v y horizontal F_h podemos ver que el problema es similar al que hemos estudiado en el capítulo 3: fuerza de extracción inclinada. Por un lado la fuerza vertical de compresión tiene que cumplir con el requisito de

$$F_v / A \leq \sigma_a$$

siendo

$F_v =$ carga vertical
$A =$ área en planta del cimiento
$\sigma_a =$ tensión admisible del terreno

con todas las consideraciones que hemos tenido en cuenta en el capítulo anterior (fuerza vertical de compresión).

5.2 La componente horizontal

Para equilibrar la fuerza horizontal utilizaremos los mismos mecanismos que hemos hecho servir en el caso de la fuerza de extracción:

- resistencia lateral del cimiento, debido al empuje en reposo del terreno
- rozamiento de la base del cimiento. En este caso este valor puede ser importante, a diferencia de lo que pasaba en el caso de la fuerza de extracción, debido a que la fuerza normal de contacto es también importante (peso propio del cimiento más la carga vertical F_v)
- Rozamiento de las caras laterales del cimiento (las caras paralelas a la dirección de la fuerza F_h)
- Resistencia a compresión de la losa de hormigón armado del pavimento (si la hay).
En este momento podemos recordar todas las consideraciones que hemos hecho en el capítulo anterior sobre la fuerza horizontal: la capacidad de la losa de hormigón para absorberla (sin que resbale encima del suelo o pandee), los rozamientos laterales que pueden ser anulados por la retracción (cohesión) del terreno o por el agua (lluvia o nivel freático), y la resistencia lateral del cimiento debida al empuje en reposo (empuje pasivo, solo en el caso que fuese necesaria para llegar al coeficiente de seguridad y siempre comprobando que el desplazamiento necesario para generar este empuje pasivo es admisible por el conjunto de la construcción tensada).

La diferencia principal yace en el hecho que esta vez la fuerza vertical es de compresión y por lo tanto ayuda al rozamiento de la base del cimiento. Así, en este caso tendremos que en la superficie de contacto entre la base del cimiento y el terreno hay una fuerza normal igual a:

$$F_N = F_w + F_v$$

siendo

- F_N la fuerza normal en el plano de contacto
- F_w el peso propio del cimiento, más el peso de la capa de terreno (si la zapata no llega a la superficie) y el pavimento (losa, arena, pavimento, etc.) que gravita encima el cimiento.
- F_v la fuerza vertical aplicada al cimiento.

La reacción horizontal del rozamiento, de la base del cimiento, será

$$R_f = F_N \cdot f(\phi)$$

siendo $f(\phi)$ el coeficiente de rozamiento entre las dos superficies.

5.3 Giro de la zapata

Tal y como hemos estudiado en el caso de la fuerza de extracción inclinada, sabemos que la fuerza horizontal aplicada no está alineada con las fuerzas que se oponen (rozamiento de la base y reacción por el empuje en reposo del terreno). Por lo tanto, hace falta estudiar el comportamiento del cimiento frente a un posible giro de la zapata.

Hemos comentado también que no es habitual poner una placa de fijación, del elemento que transmite la compresión inclinada, en una situación tal que se alinee con el punto de encuentro de la componente del peso propio y de la reacción por el empuje en reposo, ya que genera problemas de replanteo y puede provocar fácilmente errores (equivocarse de lado, por ejemplo), siendo más común colocar siempre la placa centrada en el cimiento.

En el momento del vuelco, la zapata se desengancha del suelo y por lo tanto desaparece el rozamiento de la base. Eso provoca que toda la reacción a la fuerza horizontal se haya de producir por la resistencia del empuje en reposo del terreno. Ahora bien, atendido que en este caso la fuerza vertical suele ser bastante importante, el rozamiento de la base también lo es y prescindir de este valor puede ser muy significativo. Es muy posible que la resistencia del empuje en reposo no sea suficiente para contrarrestar la fuerza horizontal y se genere un mecanismo de reacción por el empuje pasivo. Si eso es así, hace falta comprobar:

- que no se supera el empuje pasivo
- que el movimiento que se ha producido para generar este empuje pasivo es admisible para la construcción tensada.
Los cimientos de las construcciones tensadas.
Ramon Sastre, 2006

Si tomamos momentos respecto al punto de aplicación de la reacción del terreno (empuje en reposo) que, seguramente, es un punto cercano al posible centro de giro de la zapata, en el caso que se produjese este giro, tendríamos los valores siguientes:

\[M_b = F_h \cdot \frac{2}{3} \cdot h \]

\[M_e = F_N \cdot \frac{1}{2} \cdot a \]

siendo

- \(M_b \) el momento de vuelco
- \(M_e \) el momento equilibrante
- \(F_h \) la componente horizontal de la fuerza aplicada
- \(F_N \) la fuerza vertical que llega a la base del cimiento \((F_N = F_w + F_v)\)

y como siempre, aplicando el coeficiente de seguridad \(f_s \), hará falta que se cumpla:

\[M_e \geq M_b \cdot f_s \]

5.4 Ejemplos

Se trata de diseñar un cimiento capaz de soportar una fuerza de compresión inclinada 63,4° con los valores siguientes

\[F_t = 11,18 \text{ t} \quad (F_x = 5 \text{ t} \; ; \; F_y = 10 \text{ t}) \]

Los datos del terreno en el cual se sitúa el cimiento son:

- tensión admisible del terreno a 1m de profundidad 2,5 kg/cm² (25 t/m²)
- densidad suelo \(\gamma = 1,9 \text{ t/m}^3 \)
- angulo de rozamiento interno del suelo \(\phi = 35^\circ \)
- rugosidad de las caras laterales de la zapata = normal
- densidad del hormigón = 2,3
- \(f(\phi) = \tan \left(\frac{2\phi}{3}\right) = 0,43 \)
- \(K_0 = 0,4 \)

Caso 1

Suponemos que la zapata se encuentra en una zona donde no hay ningún tipo de pavimento por encima del cimiento. Por lo tanto la lluvia afecta directamente el terreno y puede anular la capacidad de rozamiento entre la zapata y el terreno contiguo. No obstante, la profundidad de la zapata protege el plano de la base y aquí si que tendremos en cuenta el rozamiento.

Si dimensionamos la zapata por la tensión admisible tendremos que

\[A = \frac{10}{25} = 0,4 \text{ m}^2 \]

\[a = \sqrt{0,4} = 0,63 \text{ m} \]

Por lo cual, sugerimos una zapata de 80 x 80 x 80 cm, con un volumen de 0,512 m³ y un peso de 1,18 t. La fuerza de rozamiento a la base del cimiento es
La resistencia por empuje en reposo del terreno es
\[R_{eo} = (a \cdot h) \cdot \frac{1}{2} \cdot K_0 \cdot \gamma \cdot h^2 \]
\[R_{eo} = 0,8^2 \cdot \frac{1}{2} \cdot 0,4 \cdot 1,9 \cdot 0,8^2 = 0,156 \text{ t} \]

Así la resistencia total horizontal es \(R_H = R_f + R_{eo} = 4,97 \text{ t} \), que es un valor insuficiente ya que el coeficiente de seguridad no llega ni a la unidad. Hace falta aumentar las dimensiones del cimiento de forma sustancial.

Probemos, a continuación, una zapata de \(150 \times 150 \times 150 \text{ cm} \), con un volumen de \(3,375 \text{ m}^3 \) y un peso de \(7,76 \text{ t} \). repetimos las operaciones anteriores y tendremos que
\[R_f = F_N \cdot f(\phi) = 17,76 \cdot 0,43 = 7,63 \text{ t} \]

mientras que la resistencia por empuje en reposo del terreno es
\[R_{eo} = (a \cdot h) \cdot \frac{1}{2} \cdot K_0 \cdot \gamma \cdot h^2 \]
\[R_{eo} = 1,5^2 \cdot \frac{1}{2} \cdot 0,4 \cdot 1,9 \cdot 1,5^2 = 1,92 \text{ t} \]

La resistencia total horizontal es \(R_H = R_f + R_{eo} = 9,55 \text{ t} \), que genera un coeficiente de seguridad a la fuerza horizontal de
\[f_s = R_H / F_h = 9,55 / 5 = 1,91 \]

Si consideramos que este valor es demasiado exagerado, podemos afinar más. Con una zapata de \(140 \times 140 \times 140 \text{ cm} \) el coeficiente de seguridad es \(1,69 \) y aun afinando más una zapata de \(130 \times 130 \times 130 \text{ cm} \) nos da un coeficiente de seguridad de \(1,51 \) que ya sería el mínimo aceptable.

Suponemos que nos queda esta última propuesta de una zapata cúbica de \(1,3 m \) de lado. Va mos a comprobar a continuación el equilibrio al giro de la zapata. En el momento del vuelco, desaparece el rozamiento de la base y tenemos que
\[M_b = F_h \cdot 2/3 \cdot h = 5 \cdot 2/3 \cdot 1,3 = 4,33 \text{ mt} \]
\[M_e = F_N \cdot \frac{1}{2} \cdot a = 15,05 \cdot 0,5 \cdot 1,3 = 9,8 \text{ mt} \]

El coeficiente de seguridad \(f_s = M_e / M_b = 9,8 / 4,33 = 2,26 \) es más que suficiente.

Para el tema del giro de la zapata es interesante comprobar que dimensión es mejor aumentar a efectos de estabilidad al vuelco. Parece obvio que si aumentamos el brazo de palanca del peso vertical (dimensión \(a \)) mejoraremos proporcionalmente el momento equilibrante, y un poco más, ya que también aumenta el peso de la zapata y por lo tanto aumenta \(F_N \).
6. Elemento empotrado en la cimentación

6.1 Introducción

En algunos casos, sobre todo en el perímetro de las construcciones tensadas nos encontramos con soluciones basadas en bípodes (un mástil y un viento) o trípodes (uno o dos mástiles con dos o un viento respectivamente) e incluso conjuntos más complejos de mástiles y vientos.

Los vientos suelen estorbar, ya que suelen ser cables, muy delgados, que no se ven y pueden provocar accidentes. Además ocupan un espacio que no es aprovechable, por eso muchas veces se tiende a eliminarlos.

Para hacer esto, hace falta disponer de un elemento empotrado en la base, capaz de trabajar en voladizo y soportar la fuerza que se aplica a la coronación de este elemento, tal y como se ve en la imagen adjunta.

La forma triangular típica responde a la distribución de esfuerzos en un voladizo. No obstante, hay veces que por razones estéticas se prefiere disponer de un elemento vertical de sección constante, a modo de columna, aunque suponga utilizar más material del necesario.

En una primera aproximación parece que ésta es una solución más económica que utilizar un bípode o trípode, pero esto puede ser engañoso, ya que una de las grandes diferencias entre estas soluciones es precisamente el cimiento. Este cimiento tendrá que ser capaz de transmitir al terreno los esfuerzos siguientes:

\[
\begin{align*}
F_h &= \text{fuerza horizontal} \\
F_v &= \text{fuerza vertical (de extracción o de compresión)} \\
M_h &= \text{momento provocado por la fuerza horizontal} \\
M_v &= \text{momento provocado por la fuerza vertical (si el elemento no es perfectamente vertical)}
\end{align*}
\]

6.2 Las fuerzas

La fuerza aplicada a la parte superior del elemento se transmite directamente a la base y por lo tanto al cimiento. Habrá pues, una fuerza horizontal y una vertical de extracción o compresión. Estas fuerzas han sido estudiadas anteriormente en los capítulos anteriores y poco pode-
mos añadir.

Existe, sin embargo, una particularidad que hemos de tener en cuenta. Se trata del peso del elemento. Puede ser que sea un valor nada menospreciable y por lo tanto, hará falta sumar el peso del elemento a la fuerza de compresión o restar el peso del elemento a la fuerza de extracción, antes de aplicar las fuerzas al cimiento.

En cuanto al equilibrio de estas fuerzas, recordaremos los mecanismos de equilibrio:

Fuerza vertical.

- peso propio: cimiento, del pavimento (si lo hay), del elemento exterior
- rozamiento vertical de las caras laterales del cimiento contra el terreno circundante (siempre y cuando no haya problemas de humedad elevada o retracción de terrenos arcillosos)
- cortante de la losa de hormigón del pavimento (si existe)

Fuerza horizontal.

- Empuje en reposo del terreno, (solo utilizaremos el recurso de la resistencia por empuje pasivo a efectos de llegar a cumplir con el coeficiente de seguridad y después de evaluar los efectos del corrimiento necesario para que se genere esta resistencia por empuje pasivo)
- rozamiento horizontal de las dos caras laterales del cimiento
- rozamiento de la base del cimiento (siempre y cuando no haya peligro de vuelco de la zapata, debido a un momento elevado)

6.3 El momento

Sobre todo la fuerza horizontal, pero también la fuerza vertical si el elemento está inclinado, aplicada en la parte superior del elemento provocan sobre el cimiento un momento que puede llegar a ser la acción más determinante a la hora de dimensionarlo. Este momento se tendrá que combinar con el momento que se genera cuando hay una fuerza horizontal en el cimiento y llegar a un equilibrio.

Tal y como hemos hecho en los casos anteriores, para la fuerza horizontal y la fuerza vertical, vamos a ver cuales son los recursos que tiene un cimiento para equilibrar este momento.

- Peso del cimiento, peso del elemento exterior y la fuerza vertical (cuando es de compresión)
- Rozamiento vertical de la cara opuesta a la que tiene el punto de giro.
- Rozamiento vertical de las caras laterales

Si tenemos en cuenta que el segundo y tercer recurso pueden no existir (retracción del terreno si es arcilloso o humedad elevada en el contacto entre el cimiento y el terreno), solo nos queda el primer recurso como factor de confianza.

En este sentido, el momento equilibrante del peso del cimiento depende no solo del propio peso sino de la distancia del centro de gravedad del cimiento al punto de giro, que ya hemos comentado que estará en algún lugar próximo al punto de aplicación de la resultante del empuje en reposo. Por lo tanto, parece claro que no solo tendremos que disponer un cimiento suficientemente pesado, sino que será bueno utilizar cimientos alargados (en la dirección de la fuerza horizontal) a fin de mejorar el momento equilibrante.

Es difícil recomendar una geometría ideal, ya que depende de muchas cosas, pero parece razonable sugerir proporciones parecidas a $3x1x1$ ($axbxh$) ya que tienen una sección importante.
para hacer frente al momento y una longitud que permitirá gozar de un elemento equilibrante, con un peso propio suficiente.

Hay que notar, sin embargo, un hecho diferente en cuanto al comportamiento del cimiento. Sobretodo en el caso de fuerzas verticales, tanto de comprensión como de extracción, se ha comentado el comportamiento del cimiento a través de las bielas de compresión o de la tracción vertical generalizada de la masa del hormigón, respectivamente. En el caso que nos ocupa ahora, aparece un nuevo esfuerzo que puede ser muy importante, es el momento aplicado al cimiento y que ha de ser soportado por la sección transversal del cimiento.

Así pues, es este caso, más que en los otros, hará falta completar el diseño del cimiento con el cálculo de hormigón armado. No será suficiente dar dimensiones a, b, h al cimiento sino que hará falta determinar que armadura tiene que incorporar para poderse comportar como una pieza sometida a un momento flector importante.

6.4 Ejemplos

Se trata de diseñar un cimiento capaz de soportar una fuerza inclinada 11,3° con los valores siguientes

$$F_x = 5,01\ t \quad (F_x = 5\ t; F_y = +1\ t)$$

Esta fuerza está aplicada a un pilar metálico inclinado de 2,4 m de altura y una inclinación tal que el punto superior se encuentre retrasado 0,5 m respecto la vertical que pasa por el eje del anclaje del pilar con el cimiento. El peso del pilar es de 0,2 t.

Los datos del terreno en el cual se sitúa el cimiento son:

- tensión admisible del terreno a 1m de profundidad 2,5 kg/cm² (25 t/m²)
- densidad suelo $\gamma = 1,9\ t/m³$
- angulo de rozamiento interno del suelo $\phi = 35°$
- rugosidad de las caras laterales de la zapata = normal
- densidad del hormigón = 2,3
- angulo de rozamiento terreno – hormigón $f(\phi) = \tg (2\phi / 3) = 0,43$
- coeficiente de empuje en reposo del terreno $K_0 = 0,4$

Caso 1

Suponemos que la zapata se encuentra en una zona donde no hay ningún tipo de pavimento por encima del cimiento. Por lo tanto la lluvia afecta directamente al terreno y puede anular la capacidad del rozamiento entre la zapata y el terreno contiguo. No obstante, la profundidad de la zapata protege el plano de la base y aquí sí que tendremos en cuenta el rozamiento.

Podemos hacer un predimensionado de la zapata con proporciones 3:1:1. Para poder escoger unos valores iniciales hace falta algunos tanteos previos o recorrer a experiencias anteriores. Suponemos una zapata de dimensiones $4x1,3x1,3$.

Equilibrio al vuelco:

- volumen $= 4 \cdot 1,3 \cdot 1,3 = 6,76\ m³$
- peso cimiento $= 6,76 \cdot 2,3 = 15,55\ t$
- peso total $= 15,55 + 0,2 - 1 = 14,75\ t$
- momento vuelco $= 5 \cdot (2,4 + 2/3 \cdot 1,3) + 1 \cdot (1/2 \cdot 4 + 0,5) = 18,85\ mt$
Los cimientos de las construcciones tensadas.

- momento equilibrante = $14,75 \cdot 2 = 29,5 \text{ mt}$
- coeficiente de seguridad al vuelco $= \frac{M_c}{M_b} = 29,5 / 18,85 = 1,56$

Parece, pues, que en este sentido las dimensiones son adecuadas. Comprobemos a continuación la seguridad ante las fuerzas.

Fuerza vertical:
- peso total = $14,75 \text{ t}$
- coeficiente de seguridad $= \frac{14,75}{1} = 14,75 >>$ más que suficiente

Fuerza horizontal:
- $F_x = 5 \text{ t}$
- reacción empuje en reposo $R_{eo} = (b \cdot h) \cdot \frac{1}{2} \cdot K_0 \cdot \gamma \cdot h^2 = (1,3 \cdot 1,3) \cdot \frac{1}{2} \cdot 0,4 \cdot 1,9 \cdot 1,3^2 = 1,085 \text{ t}$
- rozamiento de la base del cimiento $= P_t \cdot f(\phi) = 14,75 \cdot 0,43 = 6,34 \text{ t}$
- coeficiente de seguridad $= \frac{1,085 + 6.34}{5} = 1,485 >>$ suficiente